👨‍💻
LeetCode
  • Overview
  • Mixed / Design
    • Two Sum (4 Qs)
      • 0001. Two Sum
      • 0167. Two Sum II - Input array is sorted
      • 0170. Two Sum III - Data structure design
      • 0653. Two Sum IV - Input is a BST
    • 0015. 3Sum
    • 0208. Implement Trie (Prefix Tree)
  • String
    • 0014. Longest Common Prefix
    • 0028. Implement strStr()
    • 0344. Reverse String
    • 0151. Reverse Words in a String
    • 0557. Reverse Words in a String III
    • 0067. Add Binary
    • 0415. Add Strings
    • 0038. Count and Say
    • 0394. Decode String
    • 0953. Verifying an Alien Dictionary
    • 0020. Valid Parentheses
  • Linked List
    • 0002. Add Two Numbers
    • 0445. Add Two Numbers II
    • 0021. Merge Two Sorted Lists
    • 0023. Merge k Sorted Lists
    • 0206. Reverse Linked List
    • 0019. Remove Nth Node From End of List
  • Tree
    • 0098. Validate BST
    • 0100. Same Tree
    • 0101. Symmetric Tree
    • 0226. Invert Binary Tree
    • 0110. Balanced Binary Tree
    • 0250. Count Univalue Subtrees
    • 0654. Maximum Binary Tree
    • Binary Tree Traversal (7 Qs)
      • 0144. Preorder Traversal
      • 0145. Postorder Traversal
      • 0094. Inorder Traversal
      • 0102. Level Order Traversal
      • 0104. Maximum Depth
      • 0111. Minimum Depth
      • 1302. Deepest Leaves Sum
      • 0993. Cousins in Binary Tree
    • N-ary Tree Traversal (4 Qs)
      • 0589. Preorder Traversal
      • 0590. Postorder Traversal
      • 0429. Level Order Traversal
      • 0559. Maximum Depth
    • Convert to BST (2 Qs)
      • 0108. Convert Sorted Array to Binary Search Tree
      • 0109. Convert Sorted List to Binary Search Tree
  • Binary Search
    • 0704. Binary Search
    • 0035. Search Insert Position
    • 0278. First Bad Version
    • 0367. Valid Perfect Square
    • 0069. Sqrt(x)
    • 0875. Koko Eating Bananas
    • 1011. Capacity To Ship Packages Within D Days
    • 0410. Split Array Largest Sum
    • 0004. Median of Two Sorted Arrays
  • Two Pointer
    • 0075. Sort Colors
    • 0088. Merge Sorted Array
    • 0283. Move Zeroes
    • 0125. Valid Palindrome
    • 0011. Container With Most Water
    • 0026. Remove Duplicates from Sorted Array
  • Sliding Window
    • 0003. Longest Substring Without Repeating Characters
  • Sorting
    • 0148. Sort List
    • 0912. Sort an Array
    • 0215. Kth Largest in Array
  • Dynamic Programming
    • 0509. Fibonacci Number
    • 1137. N-th Tribonacci Number
    • 0055. Jump Game
    • 0053. Maximum Subarray
    • 0022. Generate Parentheses
    • 0005. Longest Palindromic Substring
    • 0072. Edit Distance
    • Buy and Sell Stock (6 Qs)
      • 0122. Best Time to Buy and Sell Stock II
      • 0714. Best Time to Buy and Sell Stock with Transaction Fee
      • 0121. Best Time to Buy and Sell Stock
      • 0309. Best Time to Buy and Sell Stock with Cooldown
      • 0123. Best Time to Buy and Sell Stock III
      • 0188. Best Time to Buy and Sell Stock IV
  • DFS / BFS
    • 0200. Number of Islands
  • Math
    • 0007. Reverse Integer
    • 0009. Palindrome Number
Powered by GitBook
On this page

Was this helpful?

  1. Two Pointer

0011. Container With Most Water

Medium | Two Pointer | 648 ms (94.80%), 27.1 MB (88.44%)

Previous0125. Valid PalindromeNext0026. Remove Duplicates from Sorted Array

Last updated 3 years ago

Was this helpful?

Source: GitHub:

Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of the line i is at (i, ai) and (i, 0). Find two lines, which, together with the x-axis forms a container, such that the container contains the most water.

Notice that you may not slant the container.

Constraints:

  • n == height.length

  • 2 <= n <= 10^5

  • 0 <= height[i] <= 10^4

Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: 
    The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. 
    In this case, the max area of water (blue section) the container can contain is 49.

Input: height = [1,1]
Output: 1

Input: height = [4,3,2,1,4]
Output: 16

Input: height = [1,2,1]
Output: 2

To begin with the potential maximum, we use two pointers from left- and right-most elements (due to the LARGEST gap in between).

Calculate the size of the container in each iteration, and move the pointer with SHORTER height until l >= r.

class Solution:
    def maxArea(self, height: List[int]) -> int:
        # (base case)
        if len( height ) == 2: return min( height )
        
        # ==================================================
        #  Array + Two Pointer                             =
        # ==================================================
        # time  : O(n)
        # space : O(1)
        
        area = 0
        l, r = 0, len(height) - 1
        
        # start from both-side (due to the LARGEST gap)
        # move the pointer with SHORTER height
        while r > l:
            tmp = min(height[l], height[r]) * (r - l)
            if tmp > area: area = tmp
            
            if height[r] > height[l]: l += 1
            else: r -= 1
                
        return area
class Solution {
    /**
     * @time  : O(n)
     * @space : O(1)
     */
     
    public int maxArea(int[] height) {
        if( height.length == 2 ) return Math.min( height[0], height[1] );
        
        int l = 0, r = height.length - 1;
        int area = 0;
            
        while( l < r ){
            int tmp = 0;
            
            if( height[l] < height[r] ){
                if( height[l] == 0 ){
                    l += 1;
                    continue;
                }
                
                tmp = height[l] * ( r-l );
                l += 1;
                
            } else{
                if( height[r] == 0 ){
                    r -= 1;
                    continue;
                }
                
                tmp = height[r] * ( r-l );
                r -= 1;
            }
            
            if( tmp > area ) area = tmp;
        }
        
        return area;
    }
}
LeetCode - Container With Most Water
Solution / Performance