👨‍💻
LeetCode
  • Overview
  • Mixed / Design
    • Two Sum (4 Qs)
      • 0001. Two Sum
      • 0167. Two Sum II - Input array is sorted
      • 0170. Two Sum III - Data structure design
      • 0653. Two Sum IV - Input is a BST
    • 0015. 3Sum
    • 0208. Implement Trie (Prefix Tree)
  • String
    • 0014. Longest Common Prefix
    • 0028. Implement strStr()
    • 0344. Reverse String
    • 0151. Reverse Words in a String
    • 0557. Reverse Words in a String III
    • 0067. Add Binary
    • 0415. Add Strings
    • 0038. Count and Say
    • 0394. Decode String
    • 0953. Verifying an Alien Dictionary
    • 0020. Valid Parentheses
  • Linked List
    • 0002. Add Two Numbers
    • 0445. Add Two Numbers II
    • 0021. Merge Two Sorted Lists
    • 0023. Merge k Sorted Lists
    • 0206. Reverse Linked List
    • 0019. Remove Nth Node From End of List
  • Tree
    • 0098. Validate BST
    • 0100. Same Tree
    • 0101. Symmetric Tree
    • 0226. Invert Binary Tree
    • 0110. Balanced Binary Tree
    • 0250. Count Univalue Subtrees
    • 0654. Maximum Binary Tree
    • Binary Tree Traversal (7 Qs)
      • 0144. Preorder Traversal
      • 0145. Postorder Traversal
      • 0094. Inorder Traversal
      • 0102. Level Order Traversal
      • 0104. Maximum Depth
      • 0111. Minimum Depth
      • 1302. Deepest Leaves Sum
      • 0993. Cousins in Binary Tree
    • N-ary Tree Traversal (4 Qs)
      • 0589. Preorder Traversal
      • 0590. Postorder Traversal
      • 0429. Level Order Traversal
      • 0559. Maximum Depth
    • Convert to BST (2 Qs)
      • 0108. Convert Sorted Array to Binary Search Tree
      • 0109. Convert Sorted List to Binary Search Tree
  • Binary Search
    • 0704. Binary Search
    • 0035. Search Insert Position
    • 0278. First Bad Version
    • 0367. Valid Perfect Square
    • 0069. Sqrt(x)
    • 0875. Koko Eating Bananas
    • 1011. Capacity To Ship Packages Within D Days
    • 0410. Split Array Largest Sum
    • 0004. Median of Two Sorted Arrays
  • Two Pointer
    • 0075. Sort Colors
    • 0088. Merge Sorted Array
    • 0283. Move Zeroes
    • 0125. Valid Palindrome
    • 0011. Container With Most Water
    • 0026. Remove Duplicates from Sorted Array
  • Sliding Window
    • 0003. Longest Substring Without Repeating Characters
  • Sorting
    • 0148. Sort List
    • 0912. Sort an Array
    • 0215. Kth Largest in Array
  • Dynamic Programming
    • 0509. Fibonacci Number
    • 1137. N-th Tribonacci Number
    • 0055. Jump Game
    • 0053. Maximum Subarray
    • 0022. Generate Parentheses
    • 0005. Longest Palindromic Substring
    • 0072. Edit Distance
    • Buy and Sell Stock (6 Qs)
      • 0122. Best Time to Buy and Sell Stock II
      • 0714. Best Time to Buy and Sell Stock with Transaction Fee
      • 0121. Best Time to Buy and Sell Stock
      • 0309. Best Time to Buy and Sell Stock with Cooldown
      • 0123. Best Time to Buy and Sell Stock III
      • 0188. Best Time to Buy and Sell Stock IV
  • DFS / BFS
    • 0200. Number of Islands
  • Math
    • 0007. Reverse Integer
    • 0009. Palindrome Number
Powered by GitBook
On this page

Was this helpful?

  1. Tree
  2. Convert to BST (2 Qs)

0108. Convert Sorted Array to Binary Search Tree

Easy | Binary Search Tree + Inorder Traversal | 40 ms (98.49%), 16.1 MB (78.29%)

PreviousConvert to BST (2 Qs)Next0109. Convert Sorted List to Binary Search Tree

Last updated 3 years ago

Was this helpful?

Source: GitHub:

Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.

A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.

Constraints:

  • 1 <= nums.length <= 10^4

  • -10^4 <= nums[i] <= 10^4

  • nums is sorted in a strictly increasing order.

Input: nums = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5]
Explanation: [0,-10,5,null,-3,null,9] is also accepted:

Input: nums = [1,3]
Output: [3,1]
Explanation: [1,3] and [3,1] are both a height-balanced BSTs.

Inorder traversal of BST is an array sorted in ascending order.

Based on the above understanding, the middle element in an array sorted in ascending order is the root of BST. Therefore, we can create a helper function to retrieve the middle element and recursively call itself to find the middle element in the left and right parts by boundary indexes (start and end).

Note that the termination of recursion is important.

  • If start > end, there are no elements for the subtree. Return None.

  • if start == end, there is only one element for the subtree. Return TreeNode.

class Solution:
    def sortedArrayToBST(self, nums: List[int]) -> TreeNode:
        #: (base case)
        if len(nums) == 1: return TreeNode(nums[0])
        if len(nums) == 2: return TreeNode(nums[0], None, TreeNode(nums[1]))
        
        # ==================================================
        #  Binary Search Tree + Inorder Traversal          =
        # ==================================================
        # time  : O(n)
        # space : O(n)
        
        self.nums = nums
        return self.subTree(0, len(nums) - 1)
        
    def subTree(self, start: int, end: int) -> TreeNode:
        if start  > end: return None
        if start == end: return TreeNode(self.nums[start])
        
        mid = (start + end) // 2
        
        node = TreeNode(self.nums[mid])
        node.left  = self.subTree(start, mid - 1)
        node.right = self.subTree(mid + 1, end)
        
        return node
class Solution {
    /**
     * @time  : O(n)
     * @space : O(n)
     */
    
    int[] nums;
    
    public TreeNode subTree(int start, int end) {
        if(start  > end) return null;
        if(start == end) return new TreeNode(nums[start]);
            
        int center = (start + end) / 2;
        
        TreeNode node = new TreeNode(nums[center]);
        node.left  = subTree(start, center - 1);
        node.right = subTree(center + 1, end);
        
        return node;
    }
    
    public TreeNode sortedArrayToBST(int[] nums) {
        /* base case */
        if(nums.length == 1) return new TreeNode(nums[0]);
        
        this.nums = nums;
        
        return subTree(0, nums.length - 1);
    }
}
LeetCode - Convert Sorted Array to Binary Search Tree
Solution / Performance