👨‍💻
LeetCode
  • Overview
  • Mixed / Design
    • Two Sum (4 Qs)
      • 0001. Two Sum
      • 0167. Two Sum II - Input array is sorted
      • 0170. Two Sum III - Data structure design
      • 0653. Two Sum IV - Input is a BST
    • 0015. 3Sum
    • 0208. Implement Trie (Prefix Tree)
  • String
    • 0014. Longest Common Prefix
    • 0028. Implement strStr()
    • 0344. Reverse String
    • 0151. Reverse Words in a String
    • 0557. Reverse Words in a String III
    • 0067. Add Binary
    • 0415. Add Strings
    • 0038. Count and Say
    • 0394. Decode String
    • 0953. Verifying an Alien Dictionary
    • 0020. Valid Parentheses
  • Linked List
    • 0002. Add Two Numbers
    • 0445. Add Two Numbers II
    • 0021. Merge Two Sorted Lists
    • 0023. Merge k Sorted Lists
    • 0206. Reverse Linked List
    • 0019. Remove Nth Node From End of List
  • Tree
    • 0098. Validate BST
    • 0100. Same Tree
    • 0101. Symmetric Tree
    • 0226. Invert Binary Tree
    • 0110. Balanced Binary Tree
    • 0250. Count Univalue Subtrees
    • 0654. Maximum Binary Tree
    • Binary Tree Traversal (7 Qs)
      • 0144. Preorder Traversal
      • 0145. Postorder Traversal
      • 0094. Inorder Traversal
      • 0102. Level Order Traversal
      • 0104. Maximum Depth
      • 0111. Minimum Depth
      • 1302. Deepest Leaves Sum
      • 0993. Cousins in Binary Tree
    • N-ary Tree Traversal (4 Qs)
      • 0589. Preorder Traversal
      • 0590. Postorder Traversal
      • 0429. Level Order Traversal
      • 0559. Maximum Depth
    • Convert to BST (2 Qs)
      • 0108. Convert Sorted Array to Binary Search Tree
      • 0109. Convert Sorted List to Binary Search Tree
  • Binary Search
    • 0704. Binary Search
    • 0035. Search Insert Position
    • 0278. First Bad Version
    • 0367. Valid Perfect Square
    • 0069. Sqrt(x)
    • 0875. Koko Eating Bananas
    • 1011. Capacity To Ship Packages Within D Days
    • 0410. Split Array Largest Sum
    • 0004. Median of Two Sorted Arrays
  • Two Pointer
    • 0075. Sort Colors
    • 0088. Merge Sorted Array
    • 0283. Move Zeroes
    • 0125. Valid Palindrome
    • 0011. Container With Most Water
    • 0026. Remove Duplicates from Sorted Array
  • Sliding Window
    • 0003. Longest Substring Without Repeating Characters
  • Sorting
    • 0148. Sort List
    • 0912. Sort an Array
    • 0215. Kth Largest in Array
  • Dynamic Programming
    • 0509. Fibonacci Number
    • 1137. N-th Tribonacci Number
    • 0055. Jump Game
    • 0053. Maximum Subarray
    • 0022. Generate Parentheses
    • 0005. Longest Palindromic Substring
    • 0072. Edit Distance
    • Buy and Sell Stock (6 Qs)
      • 0122. Best Time to Buy and Sell Stock II
      • 0714. Best Time to Buy and Sell Stock with Transaction Fee
      • 0121. Best Time to Buy and Sell Stock
      • 0309. Best Time to Buy and Sell Stock with Cooldown
      • 0123. Best Time to Buy and Sell Stock III
      • 0188. Best Time to Buy and Sell Stock IV
  • DFS / BFS
    • 0200. Number of Islands
  • Math
    • 0007. Reverse Integer
    • 0009. Palindrome Number
Powered by GitBook
On this page

Was this helpful?

  1. DFS / BFS

0200. Number of Islands

Medium | BFS + DFS | 128 ms (94.03%), 15.2 MB (95.17%)

Previous0188. Best Time to Buy and Sell Stock IVNext0007. Reverse Integer

Last updated 3 years ago

Was this helpful?

Source: GitHub:

Given an m x n 2D binary grid grid which represents a map of '1's (land) and '0's (water), return the number of islands.

An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Constraints:

  • m == grid.length

  • n == grid[i].length

  • 1 <= m, n <= 300

  • grid[i][j] is '0' or '1'.

Input: grid = [
  ["1","1","1","1","0"],
  ["1","1","0","1","0"],
  ["1","1","0","0","0"],
  ["0","0","0","0","0"]
]
Output: 1

Input: grid = [
  ["1","1","0","0","0"],
  ["1","1","0","0","0"],
  ["0","0","1","0","0"],
  ["0","0","0","1","1"]
]
Output: 3

We could solve this problem by either DFS or BFS method. (BFS requires less memory usage)

DFS

We recursively explore the whole map subject to the boundary condition for moving up, down, left, and right and whether the current location is an island or not.

BFS

We iteratively explore the whole map by using a stack to record the visited island subject to the boundary condition for moving up, down, left, and right and whether the current location is an island or not.

class Solution:
    def numIslands(self, grid: List[List[str]]) -> int:
        # (base case)
        if len(grid) == 1 and len(grid[0]) == 1: return 1 if grid[0][0] == "1" else 0
        
        # ==================================================
        #  BFS                                             =
        # ==================================================
        # time  : O(nm)
        # space : O(min(n,m))
        
        x = len(grid[0])
        y = len(grid)
        
        ans = 0
        
        for i in range(y):
            for j in range(x):
                if grid[i][j] == '1':
                    ans += 1
                    
                    visited = set()
                    visited.add( (i, j) )
                    
                    while visited:
                        row, col = visited.pop()
                        grid[row][col] = '0'
                        
                        if row   > 0 and grid[row-1][col] == '1': visited.add( (row-1, col) )
                        if row+1 < y and grid[row+1][col] == '1': visited.add( (row+1, col) )
                        if col   > 0 and grid[row][col-1] == '1': visited.add( (row, col-1) )
                        if col+1 < x and grid[row][col+1] == '1': visited.add( (row, col+1) )
                            
        return ans
        
    '''
    def numIslands(self, grid: List[List[str]]) -> int:
        # (base case)
        if len(grid) == 1 and len(grid[0]) == 1: return 1 if grid[0][0] == "1" else 0
        
        # ==================================================
        #  DFS                                             =
        # ==================================================
        # time  : O(mn)
        # space : O(mn)

        island = 0
        self.grid = grid
        
        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if grid[i][j] == '1': 
                    self.explore(i, j)
                    island += 1
        
        return island
        
    def explore(self, y: int, x: int) -> None:
        self.grid[y][x] = 0
        
        if y > 0                     and self.grid[y-1][x] == '1': self.explore(y-1, x)
        if y < len(self.grid) - 1    and self.grid[y+1][x] == '1': self.explore(y+1, x)
        if x > 0                     and self.grid[y][x-1] == '1': self.explore(y, x-1)
        if x < len(self.grid[0]) - 1 and self.grid[y][x+1] == '1': self.explore(y, x+1)
    '''
class Solution {
    /**
     * @time  : O(nm)
     * @space : O(nm)
     */
    
    char[][] map;

    public int numIslands(char[][] grid) {
        int count = 0;
        
        map = grid;
        
        for(int i=0 ; i<grid.length ; i++) {
            for(int j=0 ; j<grid[0].length ; j++) {
                if(grid[i][j] == '1') {
                    count++;
                    explore(i, j);
                }
            }
        }
        
        return count;
    }
    
    public void explore(int x, int y) {
        if(x<0 || y<0 || x>= map.length || y>= map[0].length) {
            return;
        }
        
        if(map[x][y] == '0') {
            return;
        }
        
        map[x][y] = '0';
        
        explore(x-1, y);
        explore(x+1, y);
        explore(x,   y-1);
        explore(x,   y+1);
        
        return;
    }
}
LeetCode - Number of Islands
Solution / Performance