👨‍💻
LeetCode
  • Overview
  • Mixed / Design
    • Two Sum (4 Qs)
      • 0001. Two Sum
      • 0167. Two Sum II - Input array is sorted
      • 0170. Two Sum III - Data structure design
      • 0653. Two Sum IV - Input is a BST
    • 0015. 3Sum
    • 0208. Implement Trie (Prefix Tree)
  • String
    • 0014. Longest Common Prefix
    • 0028. Implement strStr()
    • 0344. Reverse String
    • 0151. Reverse Words in a String
    • 0557. Reverse Words in a String III
    • 0067. Add Binary
    • 0415. Add Strings
    • 0038. Count and Say
    • 0394. Decode String
    • 0953. Verifying an Alien Dictionary
    • 0020. Valid Parentheses
  • Linked List
    • 0002. Add Two Numbers
    • 0445. Add Two Numbers II
    • 0021. Merge Two Sorted Lists
    • 0023. Merge k Sorted Lists
    • 0206. Reverse Linked List
    • 0019. Remove Nth Node From End of List
  • Tree
    • 0098. Validate BST
    • 0100. Same Tree
    • 0101. Symmetric Tree
    • 0226. Invert Binary Tree
    • 0110. Balanced Binary Tree
    • 0250. Count Univalue Subtrees
    • 0654. Maximum Binary Tree
    • Binary Tree Traversal (7 Qs)
      • 0144. Preorder Traversal
      • 0145. Postorder Traversal
      • 0094. Inorder Traversal
      • 0102. Level Order Traversal
      • 0104. Maximum Depth
      • 0111. Minimum Depth
      • 1302. Deepest Leaves Sum
      • 0993. Cousins in Binary Tree
    • N-ary Tree Traversal (4 Qs)
      • 0589. Preorder Traversal
      • 0590. Postorder Traversal
      • 0429. Level Order Traversal
      • 0559. Maximum Depth
    • Convert to BST (2 Qs)
      • 0108. Convert Sorted Array to Binary Search Tree
      • 0109. Convert Sorted List to Binary Search Tree
  • Binary Search
    • 0704. Binary Search
    • 0035. Search Insert Position
    • 0278. First Bad Version
    • 0367. Valid Perfect Square
    • 0069. Sqrt(x)
    • 0875. Koko Eating Bananas
    • 1011. Capacity To Ship Packages Within D Days
    • 0410. Split Array Largest Sum
    • 0004. Median of Two Sorted Arrays
  • Two Pointer
    • 0075. Sort Colors
    • 0088. Merge Sorted Array
    • 0283. Move Zeroes
    • 0125. Valid Palindrome
    • 0011. Container With Most Water
    • 0026. Remove Duplicates from Sorted Array
  • Sliding Window
    • 0003. Longest Substring Without Repeating Characters
  • Sorting
    • 0148. Sort List
    • 0912. Sort an Array
    • 0215. Kth Largest in Array
  • Dynamic Programming
    • 0509. Fibonacci Number
    • 1137. N-th Tribonacci Number
    • 0055. Jump Game
    • 0053. Maximum Subarray
    • 0022. Generate Parentheses
    • 0005. Longest Palindromic Substring
    • 0072. Edit Distance
    • Buy and Sell Stock (6 Qs)
      • 0122. Best Time to Buy and Sell Stock II
      • 0714. Best Time to Buy and Sell Stock with Transaction Fee
      • 0121. Best Time to Buy and Sell Stock
      • 0309. Best Time to Buy and Sell Stock with Cooldown
      • 0123. Best Time to Buy and Sell Stock III
      • 0188. Best Time to Buy and Sell Stock IV
  • DFS / BFS
    • 0200. Number of Islands
  • Math
    • 0007. Reverse Integer
    • 0009. Palindrome Number
Powered by GitBook
On this page

Was this helpful?

  1. Dynamic Programming

0022. Generate Parentheses

Medium | String + DP | 28 ms (95.96%), 14.5 MB (87.81%)

Previous0053. Maximum SubarrayNext0005. Longest Palindromic Substring

Last updated 3 years ago

Was this helpful?

Source: GitHub:

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

Constraints:

  • 1 <= n <= 8

Input: n = 3
Output: ["((()))","(()())","(())()","()(())","()()()"]

Input: n = 1
Output: ["()"]

We generate new combinations of well-formed parentheses based on previous iteration's results. Thus, it is a DP question.

Pattern 1: Add outer parenthesis by iterating previous results

dp[i] = set(['(' + x + ')' for x in dp[i-1]])

Pattern 2: Try all orders for all previous results and then perform set union.

# DP table has dp[1], dp[2], dp[3] and now compute for dp[4] (i=4)
# the following nested for loops will do: 
#     dp[i] |= set([x + y for x in dp[1] for y in dp[3]])
#     dp[i] |= set([x + y for x in dp[2] for y in dp[2]])
#     dp[i] |= set([x + y for x in dp[3] for y in dp[1]])

for j in range(1, i):
    dp[i] |= set([x + y for x in dp[j] for y in dp[i-j]])

class Solution:
    def generateParenthesis(self, n: int) -> List[str]:
        
        # ==================================================
        #  Dynamic Programming                             =
        # ==================================================
    
        dp = {1: set(['()']), 2: set(['(())', '()()'])}
        
        # (base case)
        if n == 1 or n == 2: return dp[n]
        
        for i in range(3, n+1):
            # pattern 1: outer parenthesis + subproblem with length - 1
            dp[i] = set(['(' + x + ')' for x in dp[i-1]])
            
            # pattern 2: dp[i] is formed by dp[j] + dp[i-j]
            for j in range(1, i):
                # perform set union on combinations of elements in dp[j] and dp[i-j]
                dp[i] |= set([x + y for x in dp[j] for y in dp[i-j]])
        
        return list(dp[n])
class Solution:
    def generateParenthesis(self, n: int) -> List[str]:
        # (base case)
        if n == 1: return ['()']
        
        # ==================================================
        #  String + Set                                    =
        # ==================================================
        
        ans = ['()']
        
        for _ in range(n-1):
            result = set()

            # insert '()' in each index of string
            # then using SET JOIN to combine without duplicate items
            for string in ans : result |= self.insertParenthesis( string )

            ans = result

        return ans
    
    def insertParenthesis(self, string) -> set:        
        ret = set()
        for i in range(len(string)) : ret.add(string[:i] + '()' + string[i:])
        return ret
LeetCode - Generate Parentheses
Solution / Performance