👨‍💻
LeetCode
  • Overview
  • Mixed / Design
    • Two Sum (4 Qs)
      • 0001. Two Sum
      • 0167. Two Sum II - Input array is sorted
      • 0170. Two Sum III - Data structure design
      • 0653. Two Sum IV - Input is a BST
    • 0015. 3Sum
    • 0208. Implement Trie (Prefix Tree)
  • String
    • 0014. Longest Common Prefix
    • 0028. Implement strStr()
    • 0344. Reverse String
    • 0151. Reverse Words in a String
    • 0557. Reverse Words in a String III
    • 0067. Add Binary
    • 0415. Add Strings
    • 0038. Count and Say
    • 0394. Decode String
    • 0953. Verifying an Alien Dictionary
    • 0020. Valid Parentheses
  • Linked List
    • 0002. Add Two Numbers
    • 0445. Add Two Numbers II
    • 0021. Merge Two Sorted Lists
    • 0023. Merge k Sorted Lists
    • 0206. Reverse Linked List
    • 0019. Remove Nth Node From End of List
  • Tree
    • 0098. Validate BST
    • 0100. Same Tree
    • 0101. Symmetric Tree
    • 0226. Invert Binary Tree
    • 0110. Balanced Binary Tree
    • 0250. Count Univalue Subtrees
    • 0654. Maximum Binary Tree
    • Binary Tree Traversal (7 Qs)
      • 0144. Preorder Traversal
      • 0145. Postorder Traversal
      • 0094. Inorder Traversal
      • 0102. Level Order Traversal
      • 0104. Maximum Depth
      • 0111. Minimum Depth
      • 1302. Deepest Leaves Sum
      • 0993. Cousins in Binary Tree
    • N-ary Tree Traversal (4 Qs)
      • 0589. Preorder Traversal
      • 0590. Postorder Traversal
      • 0429. Level Order Traversal
      • 0559. Maximum Depth
    • Convert to BST (2 Qs)
      • 0108. Convert Sorted Array to Binary Search Tree
      • 0109. Convert Sorted List to Binary Search Tree
  • Binary Search
    • 0704. Binary Search
    • 0035. Search Insert Position
    • 0278. First Bad Version
    • 0367. Valid Perfect Square
    • 0069. Sqrt(x)
    • 0875. Koko Eating Bananas
    • 1011. Capacity To Ship Packages Within D Days
    • 0410. Split Array Largest Sum
    • 0004. Median of Two Sorted Arrays
  • Two Pointer
    • 0075. Sort Colors
    • 0088. Merge Sorted Array
    • 0283. Move Zeroes
    • 0125. Valid Palindrome
    • 0011. Container With Most Water
    • 0026. Remove Duplicates from Sorted Array
  • Sliding Window
    • 0003. Longest Substring Without Repeating Characters
  • Sorting
    • 0148. Sort List
    • 0912. Sort an Array
    • 0215. Kth Largest in Array
  • Dynamic Programming
    • 0509. Fibonacci Number
    • 1137. N-th Tribonacci Number
    • 0055. Jump Game
    • 0053. Maximum Subarray
    • 0022. Generate Parentheses
    • 0005. Longest Palindromic Substring
    • 0072. Edit Distance
    • Buy and Sell Stock (6 Qs)
      • 0122. Best Time to Buy and Sell Stock II
      • 0714. Best Time to Buy and Sell Stock with Transaction Fee
      • 0121. Best Time to Buy and Sell Stock
      • 0309. Best Time to Buy and Sell Stock with Cooldown
      • 0123. Best Time to Buy and Sell Stock III
      • 0188. Best Time to Buy and Sell Stock IV
  • DFS / BFS
    • 0200. Number of Islands
  • Math
    • 0007. Reverse Integer
    • 0009. Palindrome Number
Powered by GitBook
On this page

Was this helpful?

  1. Tree
  2. Binary Tree Traversal (7 Qs)

0993. Cousins in Binary Tree

Easy | Tree + Level-order Traversal | 24 ms (97.60%), 14.1 MB (97.24%)

Previous1302. Deepest Leaves SumNextN-ary Tree Traversal (4 Qs)

Last updated 3 years ago

Was this helpful?

Source: GitHub:

Given the root of a binary tree with unique values and the values of two different nodes of the tree x and y, return true if the nodes corresponding to the values x and y in the tree are cousins, or false otherwise.

Two nodes of a binary tree are cousins if they have the same depth with different parents.

Note that in a binary tree, the root node is at depth 0, and children of each depth k node are at the depth k + 1.

Constraints:

  • The number of nodes in the tree is in the range [2, 100].

  • 1 <= Node.val <= 100

  • Each node has a unique value.

  • x != y

  • x and y are exist in the tree.

Extension question of Level-order traversal.

While traversing the tree in level order, we need additional information:

  • Whenever we append a node onto the stack, we need to record its parent node.

  • We need to know which level (depth) we are at since cousin nodes exist in the same depth. That is to say, if we only find one node instead of two nodes, there is no cousin node existing.

class Solution:
    def isCousins(self, root: TreeNode, x: int, y: int) -> bool:
        
        # ==================================================
        #  Binary Tree + Level Order Traversal             =
        # ==================================================
        # time  : O(n)
        # space : O(n)
        
        depth = 0
        target = None
        stack = [(root, None)]
        
        while stack:
            for i in range(len(stack)):
                node, parent = stack.pop(0)
                
                if node.val == x or node.val == y:
                    if target:
                        return True if depth == target[0] and parent != target[1] else False
                    target = (depth, parent)
            
                if node.left: stack.append((node.left, node))
                if node.right: stack.append((node.right, node))
            
            if target: return False
            depth += 1
            
        return False
LeetCode - Cousins in Binary Tree
Solution / Performance